A Simplex-Based Extension of Fourier-Motzkin for Solving Linear Integer Arithmetic
نویسندگان
چکیده
This paper describes a novel decision procedure for quantifierfree linear integer arithmetic. Standard techniques usually relax the initial problem to the rational domain and then proceed either by projection (e.g. Omega-Test) or by branching/cutting methods (branch-and-bound, branch-and-cut, Gomory cuts). Our approach tries to bridge the gap between the two techniques: it interleaves an exhaustive search for a model with bounds inference. These bounds are computed provided an oracle capable of finding constant positive linear combinations of affine forms. We also show how to design an efficient oracle based on the Simplex procedure. Our algorithm is proved sound, complete, and terminating and is implemented in the alt-ergo theorem prover. Experimental results are promising and show that our approach is competitive with state-ofthe-art SMT solvers.
منابع مشابه
Linear Programming and Integer Linear Programming
5 Algorithms 8 5.1 Fourier-Motzkin Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.2 The Simplex Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 5.3 Seidel’s Randomized Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.4 The Ellipsoid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.5 Using the Ellipsoid...
متن کاملParallel Fourier-Motzkin Elimination
Fourier{Motzkin elimination is a computationally expensive but powerful method to solve a system of linear inequalities for real and integer solution spaces. Because it yields an explicit representation of the solution set, in contrast to other methods such as Simplex, one may, in some cases, take its longer run time into account. We show in this paper that it is possible to considerably speed ...
متن کاملDeciding Disjunctive Linear Arithmetic with SAT
Disjunctive Linear Arithmetic (DLA) is a major decidable theory that is supported by almost all existing theorem provers. The theory consists of Boolean combinations of predicates of the form Σ j=1aj · xj ≤ b, where the coefficients aj , the bound b and the variables x1 . . . xn are of type Real (R). We show a reduction to propositional logic from disjunctive linear arithmetic based on Fourier-...
متن کاملSynthesis for Rational Linear Arithmetic
3 Synthesis and the Fourier-Motzkin method 4 3.1 Ordered Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Linear ordered-field arithmetic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.4 The Fourier-Motzkin synth...
متن کاملCombinatorial properties of Fourier-Motzkin elimination
Fourier-Motzkin elimination is a classical method for solving linear inequalities in which one variable is eliminated in each iteration. This method is considered here as a matrix operation and properties of this operation are established. In particular, the focus is on situations where this matrix operation preserves combinatorial matrices (defined here as (0, 1,−1)-matrices).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012